

The book was found

Introduction To Geophysical Fluid Dynamics, Volume 101, Second Edition: Physical And Numerical Aspects (International Geophysics)

Synopsis

This book provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume. Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation. Biographical and historical notes at the ends of chapters trace the intellectual development of the field. Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS).

Book Information

Series: International Geophysics (Book 101)

Hardcover: 875 pages

Publisher: Academic Press; 2 edition (September 9, 2011)

Language: English

ISBN-10: 0120887592

ISBN-13: 978-0120887590

Product Dimensions: 6 x 1.8 x 9 inches

Shipping Weight: 2.1 pounds (View shipping rates and policies)

Average Customer Review: 3.6 out of 5 stars 8 customer reviews

Best Sellers Rank: #456,298 in Books (See Top 100 in Books) #93 in Books > Science & Math > Earth Sciences > Geophysics #124 in Books > Engineering & Transportation > Engineering > Chemical > Fluid Dynamics #385 in Books > Science & Math > Physics > Dynamics

Customer Reviews

"...clear, informative, and ambitious...a unique and well-respected approach to dynamic meteorology and physical oceanography...I would recommend this book to advanced undergraduates, graduate students, and others for self-study or reference."--Pure and Applied Geophysics, Introduction to Geophysical Fluid Dynamics, Second Edition "...clear, informative, and ambitious...a unique and well-respected approach to dynamic meteorology and physical oceanography...I would recommend this book to advanced undergraduates, graduate students, and others for self-study or reference."--Pure and Applied Geophysics, Introduction to Geophysical Fluid Dynamics, Second

Edition "This book is one of the best books introducing the subject matter. The physics underlying the different phenomena of interest to geophysical fluid dynamics is concisely explained. Several problems, questions and exercises are given at the end of each chapter. I highly recommend this to undergraduate students, however, graduate students will also benefit from the material presented."--Contemporary Physics, January 29, 2013 "Introduction to Geophysical Fluid Dynamics is one of the best books introducing the subject matter. The physics underlying the different phenomena of interest to geophysical fluid dynamics is concisely explained. I highly recommend this to undergraduate students, however, graduate students will also benefit from the material presented."--Contemporary Physics, Volume 54, Issue 1

It is a good one and a right choice for me. I also recommend everyone to purchase for this item if you need it.

Excelent

Disclosure: this is a review / complaint about the paper edition, not about the contents of the book. Content-wise the book is fantastic. The author remains one of the clearest writers in the field. It is one of the best introductory books on GFD. **HOWEVER**, the printed (paper) edition does not have color! The figures on p. 719 (comparison between 20 model outputs for ENSO prediction, there is no difference in grey scale between a blue line and a green line!), or pp. 707-708 (what's the difference between dark red and dark blue in grey-scale, ey?) are not in color. There are many other examples (pp. 491, 492, etc). A lot of information is lost! May be the kindle edition, viewed on KindleFire would have proper images. **Update (April 1st, 2016):** High quality color figures are available online (...)

DON'T BUY The book is an excellent textbook but the quality of the printing is extremely bad. A lot of info in the figures is lost due to the low quality of the printing.

If you want to understand how the ocean & atmosphere work and how to model them, this book is what you need! This book is about physical intuition and mathematical rigour. It provides readers with profound physical insight into the equations governing the planetary fluids and the art of resolving them numerically, together with a series of exercises (various numerical applications with the computer codes) and biographical notes of notable scientists putting the science in historical

perspective. Thank you Benoit & Jean-Marie for this fascinating textbook, which will certainly inspire the new generation of Earth System Scientists.

This 2nd edition of the book offers an outstanding introductory level course in GFD, expanding the content of the 1st edition to related computational methods, useful code examples and other very interesting material such as problems and exercises. The authors have mastered the delicate balance between theoretical aspects and practical applications, scientific details and intuition, emerging challenges and the recognition of seminal and reference works. I wish this book had been available when I was a student!

This book is really an important addition to the rapidly growing library of Atmosphere-Ocean-Climate + Geophysical Fluid Dynamics literature. Its novel approach is to combine and integrate the physical and numerical aspects of the field. The former are essential to the understanding of the processes & phenomena, the latter to manipulating the huge data sets and very large numerical models that help advance the theoretical understanding.

Perfect GFD book for beginner or advanced user! The Matlab functions associated allow us to quickly visualize and "play" with the physical principles developed throughout the book. A must have for students, instructors, or anyone interested in understanding Geophysical fluid Dynamics

[Download to continue reading...](#)

Introduction to Geophysical Fluid Dynamics, Volume 101, Second Edition: Physical and Numerical Aspects (International Geophysics) Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, Second Edition The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation) Spectral Analysis in Geophysics (Development in Solid Earth Geophysics) Near-Surface Geophysics (Investigations in Geophysics No. 13) Fluid Dynamics: Theory, Computation, and Numerical Simulation Atmosphere, Ocean and Climate Dynamics: An Introductory Text (International Geophysics) Cloud Dynamics (International Geophysics) Paleomagnetism, Volume 73, Second Edition: Continents and Oceans (International Geophysics) An Introduction to Dynamic Meteorology, Volume 88, Fourth Edition (International Geophysics) Practical Aspects of Interview and Interrogation, Second Edition (Practical Aspects of Criminal and Forensic Investigations) Atmospheric Science, Second Edition: An Introductory Survey (International Geophysics) Computational Fluid Dynamics, Second Edition: A Practical Approach Environmental Magnetism,

Volume 86: Principles and Applications of Enviromagnetics (International Geophysics) Spectral Imaging of the Atmosphere, Volume 82 (International Geophysics) An Introduction to Fluid Dynamics: Principles of Analysis and Design Aircraft Repossession Enforcement Practical Aspects Volume Ii (Kluwer Law International: International Bar Association) Introduction to Thermal Sciences: Thermodynamics, Fluid Dynamics, Heat Transfer An Introduction to Fluid Dynamics (Cambridge Mathematical Library) Computational Fluid Mechanics and Heat Transfer, Second Edition (Series in Computational and Physical Processes in Mechanics and Thermal Sciences)

[Contact Us](#)

[DMCA](#)

[Privacy](#)

[FAQ & Help](#)